GPU-accelerated Kendall Distance Computation for Large or Sparse Data.
GIGASCIENCE(2024)
Moscow Inst Phys & Technol | Johns Hopkins Univ
Abstract
BACKGROUND:Current experimental practices typically produce large multidimensional datasets. Distance matrix calculation between elements (e.g., samples) for such data, although being often necessary in preprocessing for statistical inference or visualization, can be computationally demanding. Data sparsity, which is often observed in various experimental data modalities, such as single-cell sequencing in bioinformatics or collaborative filtering in recommendation systems, may pose additional algorithmic challenges. RESULTS:We present GPU-Assisted Distance Estimation Software (GADES), a graphical processing unit (GPU)-enhanced package that allows for massively paralleled Kendall-$\tau$ distance matrices computation. The package's architecture involves specific memory management, which lifts the limits for the data size imposed by GPU memory capacity. Additional algorithmic solutions provide a means to address the data sparsity problem and reinforce the acceleration effect for sparse datasets. Benchmarking against available central processing unit-based packages on simulated and real experimental single-cell RNA sequencing or single-cell ATAC sequencing datasets demonstrated significantly higher speed for GADES compared to other methods for both sparse and dense data processing, with additional performance boost for the sparse data. CONCLUSIONS:This work significantly contributes to the development of computational strategies for high-performance Kendall distance matrices computation and allows for the efficient processing of Big Data with the power of GPU. GADES is freely available at https://github.com/lab-medvedeva/GADES-main.
MoreTranslated text
Key words
Kendall correlation,distance matrix,GPU,parallel computation,high dimension,scRNA-seq,scATAC-seq
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2009
被引用304 | 浏览
2012
被引用575 | 浏览
2015
被引用998 | 浏览
2002
被引用312 | 浏览
2018
被引用602 | 浏览
2019
被引用976 | 浏览
The Human Lung Cell Atlas - A High-Resolution Reference Map of the Human Lung in Health and Disease.
2019
被引用183 | 浏览
2022
被引用38 | 浏览
2021
被引用37 | 浏览
2024
被引用1 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest