Deep Learning Based Prediction of Depression and Anxiety in Patients with Type 2 Diabetes Mellitus Using Regional Electronic Health Records
International Journal of Medical Informatics(2025)
Abstract
Background Depression and anxiety are prevalent mental health conditions among individuals with type 2 diabetes mellitus (T2DM), who exhibit unique vulnerabilities and etiologies. However, existing approaches fail to fully utilize regional heterogeneous electronic health record (EHR) data. Integrating this data can provide a more comprehensive understanding of depression and anxiety in T2DM patients, leading to more personalized treatment strategies. Objective This study aims to develop and validate a deep learning model, the Regional EHR for Depression and Anxiety Prediction Model (REDAPM), using regional EHR data to predict depression and anxiety in patients with T2DM. Methods A case-control development and validation study was conducted using regional EHR data from the Nanjing Health Information Center (NHIC). Two retrospective, matched (1:3) datasets were constructed from the full cohort for the model's internal and external validation. These two datasets were selected from the NHIC data of 2020 and 2022, respectively. The REDAPM incorporates both structured and unstructured EHR data, capturing the temporal dependency of clinical events. The performance of REDAPM was compared to a set of baseline models, evaluated using the area under the receiver operating characteristic curve (ROC-AUC) and the area under the precision-recall curve (PR-AUC). Subgroup, ablation, and interpretation analyses were conducted to identify relevant clinical features available from EHRs. Results The internal and external validation datasets comprised 24,724 and 34,340 patients, respectively. The REDAPM outperformed baseline models in both datasets, achieving ROC-AUC scores of 0.9029±0.008 and 0.7360±0.005, and PR-AUC scores of 0.8124±0.011 and 0.5504±0.009. Ablation and subgroup experiments confirmed the significant contribution of patients' medical history text to the model's performance. Integrated gradient score analysis identified the predictive importance of other mental disorders. Conclusion The REDAPM effectively leverages the heterogeneous characteristics of regional EHR data, demonstrating strong predictive performance for depression onset in diabetic patients. It also shows potential for discovering significant clinical features, indicating considerable promise for clinical utility.
MoreTranslated text
Key words
Type 2 diabetes mellitus,Depression and anxiety,Prediction model,Deep learning,Transformers,Multimodal data
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined