WeChat Mini Program
Old Version Features

Interpretable LAI Fine Inversion of Maize by Fusing Satellite, UAV Multispectral, and Thermal Infrared Images

AGRICULTURE-BASEL(2025)

China Agr Univ

Cited 0|Views5
Abstract
Leaf area index (LAI) serves as a crucial indicator for characterizing the growth and development process of maize. However, the LAI inversion of maize based on unmanned aerial vehicles (UAVs) is highly susceptible to various factors such as weather conditions, light intensity, and sensor performance. In contrast to satellites, the spectral stability of UAV-based data is relatively inferior, and the phenomenon of “spectral fragmentation” is prone to occur during large-scale monitoring. This study was designed to solve the problem that maize LAI inversion based on UAVs is difficult to achieve both high spatial resolution and spectral consistency. A two-stage remote sensing data fusion method integrating coarse and fine fusion was proposed. The SHapley Additive exPlanations (SHAP) model was introduced to investigate the contributions of 20 features in 7 categories to LAI inversion of maize, and canopy temperature extracted from thermal infrared images was one of them. Additionally, the most suitable feature sampling window was determined through multi-scale sampling experiments. The grid search method was used to optimize the hyperparameters of models such as Gradient Boosting, XGBoost, and Random Forest, and their accuracy was compared. The results showed that, by utilizing a 3 × 3 feature sampling window and 9 features with the highest contributions, the LAI inversion accuracy of the whole growth stage based on Random Forest could reach R2 = 0.90 and RMSE = 0.38 m2/m2. Compared with the single UAV data source mode, the inversion accuracy was enhanced by nearly 25%. The R2 in the jointing, tasseling, and filling stages were 0.87, 0.86, and 0.62, respectively. Moreover, this study verified the significant role of thermal infrared data in LAI inversion, providing a new method for fine LAI inversion of maize.
More
Translated text
Key words
LAI,interpretable machine learning,data fusion,Sentinel-2,UAV,maize
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined