Chrome Extension
WeChat Mini Program
Use on ChatGLM

Explore Activation Sparsity in Recurrent LLMs for Energy-Efficient Neuromorphic Computing

CoRR(2025)

Cited 0|Views2
Abstract
The recent rise of Large Language Models (LLMs) has revolutionized the deep learning field. However, the desire to deploy LLMs on edge devices introduces energy efficiency and latency challenges. Recurrent LLM (R-LLM) architectures have proven effective in mitigating the quadratic complexity of self-attention, making them a potential paradigm for computing on-edge neuromorphic processors. In this work, we propose a low-cost, training-free algorithm to sparsify R-LLMs' activations to enhance energy efficiency on neuromorphic hardware. Our approach capitalizes on the inherent structure of these models, rendering them well-suited for energy-constrained environments. Although primarily designed for R-LLMs, this method can be generalized to other LLM architectures, such as transformers, as demonstrated on the OPT model, achieving comparable sparsity and efficiency improvements. Empirical studies illustrate that our method significantly reduces computational demands while maintaining competitive accuracy across multiple zero-shot learning benchmarks. Additionally, hardware simulations with the SENECA neuromorphic processor underscore notable energy savings and latency improvements. These results pave the way for low-power, real-time neuromorphic deployment of LLMs and demonstrate the feasibility of training-free on-chip adaptation using activation sparsity.
More
Translated text
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本研究提出了一种低成本、训练免费的算法,用于稀疏化循环大型语言模型(R-LLM)的激活,以提升神经形态硬件上的能效。

方法】:利用R-LLM模型的内在结构,提出了一种无需训练的算法,通过激活稀疏化来降低计算需求,适用于能量受限环境。

实验】:在多个零样本学习基准测试中,实验表明该方法显著降低了计算需求,同时保持了竞争力;在SENECA神经形态处理器上的硬件模拟显示了显著的节能和延迟改进。