Controllable GUI Exploration
CoRR(2025)
Abstract
During the early stages of interface design, designers need to produce multiple sketches to explore a design space. Design tools often fail to support this critical stage, because they insist on specifying more details than necessary. Although recent advances in generative AI have raised hopes of solving this issue, in practice they fail because expressing loose ideas in a prompt is impractical. In this paper, we propose a diffusion-based approach to the low-effort generation of interface sketches. It breaks new ground by allowing flexible control of the generation process via three types of inputs: A) prompts, B) wireframes, and C) visual flows. The designer can provide any combination of these as input at any level of detail, and will get a diverse gallery of low-fidelity solutions in response. The unique benefit is that large design spaces can be explored rapidly with very little effort in input-specification. We present qualitative results for various combinations of input specifications. Additionally, we demonstrate that our model aligns more accurately with these specifications than other models.
MoreTranslated text
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话