Chrome Extension
WeChat Mini Program
Use on ChatGLM

Enhancing Deep Learning Methods for Brain Metastasis Detection Through Cross-Technique Annotations on SPACE MRI

European Radiology Experimental(2025)

Cited 0|Views4
Abstract
Gadolinium-enhanced “sampling perfection with application-optimized contrasts using different flip angle evolution” (SPACE) sequence allows better visualization of brain metastases (BMs) compared to “magnetization-prepared rapid acquisition gradient echo” (MPRAGE). We hypothesize that this better conspicuity leads to high-quality annotation (HAQ), enhancing deep learning (DL) algorithm detection of BMs on MPRAGE images. Retrospective contrast-enhanced (gadobutrol 0.1 mmol/kg) SPACE and MPRAGE data of 157 patients with BM were used, either annotated on MPRAGE resulting in normal annotation quality (NAQ) or on coregistered SPACE resulting in HAQ. Multiple DL methods were developed with NAQ or HAQ using either SPACE or MRPAGE images and evaluated on their detection performance using positive predictive value (PPV), sensitivity, and F1 score and on their delineation performance using volumetric Dice similarity coefficient, PPV, and sensitivity on one internal and four additional test datasets (660 patients). The SPACE-HAQ model reached 0.978 PPV, 0.882 sensitivity, and 0.916 F1-score. The MPRAGE-HAQ reached 0.867, 0.839, and 0.840, the MPRAGE NAQ 0.964, 0.667, and 0.798, respectively (p ≥ 0.157). Relative to MPRAGE-NAQ, the MPRAGE-HAQ F1-score detection increased on all additional test datasets by 2.5–9.6 points (p < 0.016) and sensitivity improved on three datasets by 4.6–8.5 points (p < 0.001). Moreover, volumetric instance sensitivity improved by 3.6–7.6 points (p < 0.001). HAQ improves DL methods without specialized imaging during application time. HAQ alone achieves about 40
More
Translated text
Key words
Brain neoplasms,Deep learning,Image interpretation (computer-assisted),Image processing (computer-assisted),Magnetic resonance imaging
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined