WeChat Mini Program
Old Version Features

Unveiling GPT-4V's Hidden Challenges Behind High Accuracy on USMLE Questions: Observational Study

Journal of Medical Internet Research(2025)

Cited 0|Views6
Abstract
BackgroundRecent advancements in artificial intelligence, such as GPT-3.5 Turbo (OpenAI) and GPT-4, have demonstrated significant potential by achieving good scores on text-only United States Medical Licensing Examination (USMLE) exams and effectively answering questions from physicians. However, the ability of these models to interpret medical images remains underexplored. ObjectiveThis study aimed to comprehensively evaluate the performance, interpretability, and limitations of GPT-3.5 Turbo, GPT-4, and its successor, GPT-4 Vision (GPT-4V), specifically focusing on GPT-4V’s newly introduced image-understanding feature. By assessing the models on medical licensing examination questions that require image interpretation, we sought to highlight the strengths and weaknesses of GPT-4V in handling complex multimodal clinical information, thereby exposing hidden flaws and providing insights into its readiness for integration into clinical settings. MethodsThis cross-sectional study tested GPT-4V, GPT-4, and ChatGPT-3.5 Turbo on a total of 227 multiple-choice questions with images from USMLE Step 1 (n=19), Step 2 clinical knowledge (n=14), Step 3 (n=18), the Diagnostic Radiology Qualifying Core Exam (DRQCE) (n=26), and AMBOSS question banks (n=150). AMBOSS provided expert-written hints and question difficulty levels. GPT-4V’s accuracy was compared with 2 state-of-the-art large language models, GPT-3.5 Turbo and GPT-4. The quality of the explanations was evaluated by choosing human preference between an explanation by GPT-4V (without hint), an explanation by an expert, or a tie, using 3 qualitative metrics: comprehensive explanation, question information, and image interpretation. To better understand GPT-4V’s explanation ability, we modified a patient case report to resemble a typical “curbside consultation” between physicians. ResultsFor questions with images, GPT-4V achieved an accuracy of 84.2%, 85.7%, 88.9%, and 73.1% in Step 1, Step 2 clinical knowledge, Step 3 of USMLE, and DRQCE, respectively. It outperformed GPT-3.5 Turbo (42.1%, 50%, 50%, 19.2%) and GPT-4 (63.2%, 64.3%, 66.7%, 26.9%). When GPT-4V answered correctly, its explanations were nearly as good as those provided by domain experts from AMBOSS. However, incorrect answers often had poor explanation quality: 18.2% (10/55) contained inaccurate text, 45.5% (25/55) had inference errors, and 76.3% (42/55) demonstrated image misunderstandings. With human expert assistance, GPT-4V reduced errors by an average of 40% (22/55). GPT-4V accuracy improved with hints, maintaining stable performance across difficulty levels, while medical student performance declined as difficulty increased. In a simulated curbside consultation scenario, GPT-4V required multiple specific prompts to interpret complex case data accurately. ConclusionsGPT-4V achieved high accuracy on multiple-choice questions with images, highlighting its potential in medical assessments. However, significant shortcomings were observed in the quality of explanations when questions were answered incorrectly, particularly in the interpretation of images, which could not be efficiently resolved through expert interaction. These findings reveal hidden flaws in the image interpretation capabilities of GPT-4V, underscoring the need for more comprehensive evaluations beyond multiple-choice questions before integrating GPT-4V into clinical settings.
More
Translated text
Key words
artificial intelligence,natural language processing,large language model,LLM,ChatGPT,GPT,GPT-4V,USMLE,Medical License Exam,medical image interpretation,United States Medical Licensing Examination,NLP
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined