Prediction of Cognitive Conversion Within the Alzheimer’s Disease Continuum Using Deep Learning
Alzheimer's Research & Therapy(2025)
The First Affiliated Hospital of Nanjing Medical University | Nanjing Second Hospital | Xi’an Jiaotong University Health Science Centre | Sichuan University
Abstract
Early diagnosis and accurate prognosis of cognitive decline in Alzheimer’s disease (AD) is important to timely assignment to optimal treatment modes. We aimed to develop a deep learning model to predict cognitive conversion to guide re-assignment decisions to more intensive therapies where needed. Longitudinal data including five variable sets, i.e. demographics, medical history, neuropsychological outcomes, laboratory and neuroimaging results, from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort were analyzed. We first developed a deep learning model to predicted cognitive conversion using all five variable sets. We then gradually removed variable sets to obtained parsimonious models for four different years of forecasting after baseline within acceptable frames of reduction in overall model fit (AUC remaining > 0.8). A total of 607 individuals were included at baseline, of whom 538 participants were followed up at 12 months, 482 at 24 months, 268 at 36 months and 280 at 48 months. Predictive performance was excellent with AUCs ranging from 0.87 to 0.92 when all variable sets were considered. Parsimonious prediction models that still had a good performance with AUC 0.80–0.84 were established, each only including two variable sets. Neuropsychological outcomes were included in all parsimonious models. In addition, biomarker was included at year 1 and year 2, imaging data at year 3 and demographics at year 4. Under our pre-set threshold, the rate of upgrade to more intensive therapies according to predicted cognitive conversion was always higher than according to actual cognitive conversion so as to decrease the false positive rate, indicating the proportion of patients who would have missed upgraded treatment based on prognostic models although they actually needed it. Neurophysiological tests combined with other indicator sets that vary along the AD continuum can improve can provide aid for clinical treatment decisions leading to improved management of the disease. ClinicalTrials.gov Identifier: NCT00106899 (Registration Date: 31 March 2005).
MoreTranslated text
Key words
Alzheimer’s disease,Machine learning,Cognitive conversion,Prediction model
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话