WeChat Mini Program
Old Version Features

Applying Deep Generative Model in Plan Review of Intensity Modulated Radiotherapy.

Peng Huang,Jiawen Shang, Yuhan Fan, Zhixing Chang,Yingjie Xu,Ke Zhang,Zhihui Hu,Jianrong Dai,Hui Yan

Medical physics(2025)

Cited 0|Views6
Abstract
BACKGROUND:Plan review is critical for safely delivering radiation dose to a patient under radiotherapy and mainly performed by medical physicist in routine clinical practice. Recently, the deep-learning models have been used to assist this manual process. As black-box models the reason for their predictions are unknown. Thus, it is important to improve the model interpretability to make them more reliable for clinical deployment. PURPOSE:To alleviate this issue, a deep generative model, adversarial autoencoder networks (AAE), was employed to automatically detect anomalies in intensity-modulated radiotherapy plans. METHODS:The typical plan parameters (collimator position, gantry angle, monitor unit, etc.) were collected to form a feature vector for the training sample. The reconstruction error was the difference between the output and input of the model. Based on the distribution of reconstruction errors of the training samples, a detection threshold was determined. For a test plan, its reconstruction error obtained by the learned model was compared with the threshold to determine its category (anomaly or regular). The model was tested with four network settings. It was also compared with the vanilla AE and the other six classic models. The area under receiver operating characteristic curve (AUC) along with other statistical metrics was employed for evaluation. RESULTS:The AAE model achieved the highest accuracy (AUC = 0.997). The AUCs of the other seven classic methods are 0.935 (AE), 0.981 (K-means), 0.896 (principle component analysis), 0.978 (one-class support vector machine), 0.934 (local outlier factor), and 0.944 (hierarchical density-based spatial clustering of applications with noise), and 0.882 (isolation forest). This indicates that AAE model could detect more anomalous plans with less false positive rate. CONCLUSIONS:The AAE model can effectively detect anomaly in radiotherapy plans for lung cancer patients. Comparing with the vanialla AE and other classic detection models, the AAE model is more accurate and transparent. The proposed AAE model can improve the interpretability of the results for radiotherapy plan review.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined