Intelligent Identification of Coal Fractures Using an Improved U-shaped Network
ADVANCES IN GEO-ENERGY RESEARCH(2025)
Henan Polytech Univ
Abstract
To address the challenges of coal fracture image recognition, including interference from gangue and multiscale fractures, a multiscale coal fracture segmentation network model to significantly enhance the recognition of coal fracture structures is proposed. The model significantly enhances the recognition of fracture structures based on a U-shaped network architecture and the incorporation of several advanced techniques, including transfer learning, depthwise separable atrous convolutions, and residual modules. Transfer learning, by leveraging pretrained visual geometry group 16-layer network weights, bolsters the feature extraction capabilities of an encoder. Simultaneously, the integration of depthwise separable atrous convolutions and residual modules optimizes a decoder, thereby improving segmentation accuracy and the robust recognition of fractures within images. Experimental results based on qualitative and quantitative data showed that the proposed model surpassed traditional convolutional neural networks, demonstrating proficiency in identifying multiscale fractures in complex coal images. The model was applied to the identification of fractures in roadway surrounding rock boreholes. By extracting fractures from borehole imaging videos and planar diagrams, and conducting cross-validation, the study precisely delineated the fracture distribution. Additionally, to improve coal seam gas extraction efficiency, the grouting and sealing range for cross-layer extraction boreholes was determined.
MoreTranslated text
Key words
Fracture identification,U-shaped network,convolutional neural network,gas extraction,coal mine safety
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined