Identify Tea Plantations Using Multidimensional Features Based on Multisource Remote Sensing Data: A Case Study of the Northwest Mountainous Area of Hubei Province
Remote Sensing(2025)
Abstract
Accurate identification of tea plantation distribution is critical for optimizing agricultural practices, informing land-use policies, and preserving ecological balance. However, challenges persist in mountainous regions with persistent cloud cover and heterogeneous vegetation, where conventional methods relying on single-source remote sensing features face limitations due to spectral confusion and information redundancy. This study proposes a novel framework integrating multisource remote sensing data and feature optimization to address these challenges. Leveraging the Google Earth Engine (GEE) cloud platform, this study synthesized 108 spectral, textural, phenological, and topographic features from Sentinel-1 SAR and Sentinel-2 optical data. SVM-RFE (support vector machine recursive feature elimination) was employed to identify the optimal feature subset, prioritizing spectral indices, radar texture metrics, and terrain parameters. Comparative analysis of three classifiers, namely random forest (RF), support vector machine (SVM), and decision tree (DT), revealed that RF achieved the highest accuracy, with an overall accuracy (OA) of 95.03%, a kappa coefficient of 0.95. The resultant 10 m resolution spatial distribution map of tea plantations in Shiyan City (2023) demonstrates robust performance in distinguishing plantations from forests and farmlands, particularly in cloud-prone mountainous terrain. This methodology not only mitigates dimensionality challenges through feature optimization but also provides a scalable solution for large-scale agricultural monitoring, offering critical insights for sustainable land management and policy formulation in subtropical mountainous regions.
MoreTranslated text
Key words
Google Earth Engine,tea plantation,Sentinel-1,Sentinel-2,feature selection
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined