FEGGNN: Feature-Enhanced Gated Graph Neural Network for Robust Few-Shot Skin Disease Classification.
Computers in Biology and Medicine(2025)
School of Computer Science and Engineering
Abstract
Accurate and timely classification of skin diseases is essential for effective dermatological diagnosis. However, the limited availability of annotated images, particularly for rare or novel conditions, poses a significant challenge. Although few-shot learning (FSL) methods in computer-aided diagnosis (CAD) can decrease the dependence on extensive labeled data, their efficacy is often diminished by these challenges, particularly the catastrophic forgetting defect during the sequence of few-shot tasks. To address these challenges, we propose a Feature Enhanced Gated Graph Neural Network (FEGGNN) framework to improve the few-shot classification of skin diseases. The FEGGNN leverages an efficient Asymmetric Convolutional Network (ACNet) to extract high-quality feature maps from skin lesion images, which are subsequently used to construct a graph where nodes represent feature vectors and edges indicate similarities between samples. The core of FEGGNN consists of multiple aggregation blocks within the Graph Neural Network (GNN) framework, which iteratively refine node and edge features. Each block updates node features by aggregating information from neighboring nodes, weighted by edge features, to capture contextual relationships. Simultaneously, Gated Recurrent Units (GRUs) model long-term dependencies across tasks, enabling effective knowledge transfer and mitigating catastrophic forgetting. The Efficient Channel Attention (ECA) mechanism further enhances edge feature updates by focusing on the most relevant feature channels, optimizing edge weight computation. This iterative refinement process enables FEGGNN to progressively enhance feature representations, ensuring robust performance in diverse few-shot classification tasks. FEGGNN's superior ability to generalize to unseen classes is demonstrated by its state-of-the-art performance, achieving 84.90% accuracy on Derm7pt and 95.19% on SD-198 in 2-way 5-shot settings.
MoreTranslated text
Key words
Few-shot learning,Skin disease classification,Graph neural network,Gated recurrent units,Enhanced features
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined