[Analysis the Source and Spatiotemporal Variation of Dissolved Organic Matter in the Chaohe River Watershed].
Huan jing ke xue= Huanjing kexue(2025)
School of Earth System Science
Abstract
Dissolved organic matter (DOM) is widespread in aquatic environments and plays a crucial role in various biogeochemistry processes. Urbanization and anthropogenic activities have significantly altered the source and characteristics of DOM in rivers. Therefore, analyzing the spatial and temporal variation of DOM on a watershed scale to trace its source for effective water quality management is important. In this study, the composition characteristics of DOM in the Chaohe River watershed, which is the source of drinking water in northern China, were analyzed using the EEM-PARAFAC method. Furthermore, the source of DOM was further identified by analyzing the relationships among optical parameters. The results revealed the four components in DOM: component 1 resembled fulvic acid, while component 2 and component 4 exhibited characteristics similar to those of humic compounds. Component 3 displayed tryptophan-like acidity, with the highest intensity observed during both high and low flow periods. Temporal and spatial variation in fluorescence parameters further indicated a distinct source of DOM across the three water periods. Notably, non-point source pollution was prominent during the low water period, whereas soil-related characteristics dominated during the flood season. Spatial analysis revealed that under natural vegetation cover, terrestrial detritus significantly influenced DOM originating from the source area. However, urbanization-induced anthropogenic pollution had become more pronounced in the middle reaches. Additionally, the downstream area with extensive aquatic vegetation coverage experienced notable impacts from phytoplankton proliferation. Correlation analysis demonstrated varying degrees of association between water environmental parameters, nitrogen and phosphorus content, optical parameters, and DOM across three hydrological periods. These findings revealed that water environment dynamics and nutrient sources govern the temporal and spatial distribution patterns of DOM.
MoreTranslated text
Key words
Chaohe River watershed,dissolved organic matter(DOM),excitation-emission matrix spectra,parallel factor analysis,optical parameters
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest