Chrome Extension
WeChat Mini Program
Use on ChatGLM

Deep Learning-Based High-Resolution Time Inference for Deciphering Dynamic Gene Regulation from Fixed Embryos

Huihan Bao, Shihe Zhang, Zhiyang Yu,Heng Xu

biorxiv(2025)

Shanghai Jiao Tong University

Cited 0|Views3
Abstract
Embryo development is driven by the spatiotemporal dynamics of complex gene regulatory networks. Uncovering these dynamics requires simultaneous tracking of multiple fluctuating molecular species over time, which exceeds the capabilities of traditional live-imaging approaches. Fixed-embryo imaging offers the necessary sensitivity and capacity but lacks temporal resolution. Here, we present a multi-scale ensemble deep learning approach to precisely infer absolute developmental time with 1-minute resolution from nuclear morphology in fixed Drosophila embryo images. Applying this approach to quantitative imaging of fixed wild-type embryos, we resolve the spatiotemporal regulation of the endogenous segmentation gene Kruppel ( Kr ) by multiple transcription factors (TFs) during early development without genetic modification. Integrating a time-resolved theoretical model of single-molecule mRNA statistics, we further uncover the unsteady-state bursty kinetics of the endogenous segmentation gene, hunchback ( hb ), driven by dynamic TF binding. Our method provides a versatile framework for deciphering complex gene network dynamics in genetically unmodified organisms. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本研究提出了一种基于深度学习的高分辨率时间推断方法,可以从固定胚胎的核形态中推断出1分钟分辨率的发展时间,进而解析未经过基因改造的果蝇胚胎中的动态基因调控网络。

方法】:研究采用多尺度集成深度学习技术,通过分析固定果蝇胚胎图像中的核形态,精确推断绝对发育时间。

实验】:实验通过对固定野生型果蝇胚胎的定量成像,解析了早期发育过程中,多个转录因子对内源分割基因Kruppel (Kr)的时空调控,并使用时间解析的单分子mRNA统计模型,揭示了内源分割基因hunchback (hb)的不稳定状态爆发性动力学,由动态转录因子结合驱动。实验使用了固定Drosophila胚胎图像数据集,并得到了精确的时间分辨率推断结果。