Prediction of BRAF and TERT Status in PTCs by Machine Learning-Based Ultrasound Radiomics Methods: A Multicenter Study.
Journal of clinical & translational endocrinology(2025)
Department of Ultrasound | Bayer Healthcare
Abstract
Background:Preoperative identification of genetic mutations is conducive to individualized treatment and management of papillary thyroid carcinoma (PTC) patients. Purpose: To investigate the predictive value of the machine learning (ML)-based ultrasound (US) radiomics approaches for BRAF V600E and TERT promoter status (individually and coexistence) in PTC. Methods:This multicenter study retrospectively collected data of 1076 PTC patients underwent genetic testing detection for BRAF V600E and TERT promoter between March 2016 and December 2021. Radiomics features were extracted from routine grayscale ultrasound images, and gene status-related features were selected. Then these features were included to nine different ML models to predicting different mutations, and optimal models plus statistically significant clinical information were also conducted. The models underwent training and testing, and comparisons were performed. Results:The Decision Tree-based US radiomics approach had superior prediction performance for the BRAF V600E mutation compared to the other eight ML models, with an area under the curve (AUC) of 0.767 versus 0.547-0.675 (p < 0.05). The US radiomics methodology employing Logistic Regression exhibited the highest accuracy in predicting TERT promoter mutations (AUC, 0.802 vs. 0.525-0.701, p < 0.001) and coexisting BRAF V600E and TERT promoter mutations (0.805 vs. 0.678-0.743, p < 0.001) within the test set. The incorporation of clinical factors enhanced predictive performances to 0.810 for BRAF V600E mutant, 0.897 for TERT promoter mutations, and 0.900 for dual mutations in PTCs. Conclusion:The machine learning-based US radiomics methods, integrated with clinical characteristics, demonstrated effectiveness in predicting the BRAF V600E and TERT promoter mutations in PTCs.
MoreTranslated text
Key words
Papillary thyroid carcinoma,BRAF V600E,TERT promoter,Machine learning,Radiomics,Prediction
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper