Hierarchical Contrastive Learning for Multi-Label Text Classification
Scientific reports(2025)
Abstract
Multi-label text classification presents a significant challenge within the field of text classification, particularly due to the hierarchical nature of labels, where labels are organized in a tree-like structure that captures parent-child and sibling relationships. This hierarchy reflects semantic dependencies among labels, with higher-level labels representing broader categories and lower-level labels capturing more specific distinctions. Traditional methods often fail to deeply understand and leverage this hierarchical structure, overlooking the subtle semantic differences and correlations that distinguish one label from another. To address this shortcoming, we introduce a novel method called Hierarchical Contrastive Learning for Multi-label Text Classification (HCL-MTC). Our approach leverages the contrastive knowledge embedded within label relationships by constructing a graph representation that explicitly models the hierarchical dependencies among labels. Specifically, we recast multi-label text classification as a multi-task learning problem, incorporating a hierarchical contrastive loss that is computed through a carefully designed sampling process. This unique loss function enables our model to effectively capture both the correlations and distinctions among labels, thereby enhancing the model’s ability to learn the intricacies of the label hierarchy. Experimental results on widely-used datasets, such as RCV1-v2 and WoS, demonstrate that our proposed HCL-MTC model achieves substantial performance gains compared to baseline methods.
MoreTranslated text
Key words
Contrastive learning,Hierarchical structure,Multi-task,Multi-label text classification
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话