WeChat Mini Program
Old Version Features

Optimisation of Aluminium Alloy Variable Diameter Tubes Hydroforming Process Based on Machine Learning

mdpi(2025)

Institute of Metal Research

Cited 0|Views2
Abstract
To predict the forming behaviour of aluminium alloy variable diameter tubes during hydroforming, a genetic algorithm-enhanced particle swarm optimisation (GA-PSO) is used to optimise a backpropagation neural network (BP-NN). A fast prediction model based on the GA-PSO-BP neural network for the hydroforming of aluminium alloy variable diameter tubes was established. The loading paths (internal pressure, axial feeds, and coefficient of friction) were randomly sampled using the Latin hypercube random sampling method. The minimum wall thickness, maximum wall thickness, and maximum expansion height of the formed tubes are included in the main evaluation factors of the forming results. A variety of machine learning algorithms are used to predict, and the prediction results are compared with the finite element model in terms of error. The maximum average absolute value error and mean square error of the proposed model are less than 0.2, which improves the accuracy by 20.4% compared to the unoptimised PSO-BP neural network algorithm. The maximum error between simulated and predicted results is within 4%. The model allows effective prediction of the hydroforming effect of aluminium alloy variable diameter tubes and improves the computational rate and model accuracy of the model. The same process parameters are experimentally verified, the minimum wall thickness of the formed part is 1.27 mm, the maximum wall thickness is 1.53 mm, and the maximum expansion height is 5.11 mm. The maximum thinning and the maximum thickening rate comply with the standard of hydroforming, and the tube has good formability without obvious defects.
More
Translated text
Key words
variable diameter tubes,hydroforming,machine learning,GA-PSO-BP algorithm
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined