Chrome Extension
WeChat Mini Program
Use on ChatGLM

Bridging the Gap: Aligning Language Model Generation with Structured Information Extraction Via Controllable State Transition.

WWW 2025(2025)

Cited 0|Views2
Abstract
Large language models (LLM) achieve superior performance in generative tasks. However, due to the natural gap between language model generation and structured information extraction in three dimensions: task type, output format, and modeling granularity, they often fall short in structured information extraction, a crucial capability for effective data utilization on the web. In this paper, we define the generation process of the language model as the controllable state transition, aligning the generation and extraction processes to ensure the integrity of the output structure and adapt to the goals of the information extraction task. Furthermore, we propose the Structure2Text decider to help the language model understand the fine-grained extraction information, which converts the structured output into natural language and makes state decisions, thereby focusing on the task-specific information kernels, and alleviating language model hallucinations and incorrect content generation. We conduct extensive experiments and detailed analyses on myriad information extraction tasks. Our method not only achieves significant performance improvements but also ensures the integrity of the output structure, making it easy to parse the extracted content.
More
Translated text
Key words
Information Extraction,Large Language Model,Few-shot Learning,Structure Generation
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest