Integrating Large-Scale Meta-Gwas and PigGTEx Resources to Decipher the Genetic Basis of 232 Complex Traits in Pigs.
National science review(2025)
Center for Quantitative Genetics and Genomics (QGG) | Institute of Animal Science | College of Animal Science and Technology | Westlake Laboratory of Life Sciences and Biomedicine | Department of Animal and Avian Sciences | Institute of Swine Science
Abstract
Understanding the molecular and cellular mechanisms underlying complex traits in pigs is crucial for enhancing genetic gain via artificial selection and utilizing pigs as models for human disease and biology. Here, we conducted comprehensive genome-wide association studies (GWAS) followed by a cross-breed meta-analysis for 232 complex traits and a within-breed meta-analysis for 12 traits, using 28.3 million imputed sequence variants in 70 328 animals across 14 pig breeds. We identified 6878 quantitative trait loci (QTL) for 139 complex traits. Leveraging the Pig Genotype-Tissue Expression resource, we systematically investigated the biological context and regulatory mechanisms behind these trait-QTLs, ultimately prioritizing 14 829 variant-gene-tissue-trait regulatory circuits. For instance, rs344053754 regulates UGT2B31 expression in the liver and intestines, potentially by modulating enhancer activity, ultimately influencing litter weight at weaning in pigs. Furthermore, we observed conservation of certain genetic and regulatory mechanisms underlying complex traits between humans and pigs. Overall, our cross-breed meta-GWAS in pigs provides invaluable resources and novel insights into the genetic regulatory and evolutionary mechanisms of complex traits in mammals.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper