Chelated Tin Halide Perovskite for Near-Infrared Neuromorphic Imaging Array Enabling Object Recognition and Motion Perception
Nature communications(2025)
Abstract
Neuromorphic imaging arrays integrate sensing, memory, and processing for efficient spatiotemporal fusion, enabling intelligent object and motion recognition in autonomous and surveillance systems. Halide perovskites offer potential for neuromorphic imaging by regulating photogenerated ions and charges, but lead toxicity and limited response range remain key limitations. Here, we present lead-free non-toxic formamidinium tin triiodide perovskites functionalized with bio-friendly quercetin molecules via a multi-site chelate strategy, achieving favorable near-infrared response and optoelectronic properties. Leveraging a non-equilibrium photogenerated carrier strategy, the formamidinium tin triiodide-quercetin based near-infrared optoelectronic synapses exhibit key synaptic features for practical applications, including quasi-linear time-dependent photocurrent generation, prolonged photocurrent decay, high stability, and low energy consumption. Ultimately, a 12 × 12 real-time neuromorphic near-infrared imaging array is constructed on thin-film transistor backplanes, enabling hardware-level spatiotemporal fusion for robust object recognition and motion perception in complex environments for autonomous and surveillance systems.
MoreTranslated text
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined