WeChat Mini Program
Old Version Features

Soft Causal Learning for Generalized Molecule Property Prediction: an Environment Perspective

arXiv · Machine Learning(2025)

Cited 0|Views3
Abstract
Learning on molecule graphs has become an increasingly important topic in AI for science, which takes full advantage of AI to facilitate scientific discovery. Existing solutions on modeling molecules utilize Graph Neural Networks (GNNs) to achieve representations but they mostly fail to adapt models to out-of-distribution (OOD) samples. Although recent advances on OOD-oriented graph learning have discovered the invariant rationale on graphs, they still ignore three important issues, i.e., 1) the expanding atom patterns regarding environments on graphs lead to failures of invariant rationale based models, 2) the associations between discovered molecular subgraphs and corresponding properties are complex where causal substructures cannot fully interpret the labels. 3) the interactions between environments and invariances can influence with each other thus are challenging to be modeled. To this end, we propose a soft causal learning framework, to tackle the unresolved OOD challenge in molecular science, from the perspective of fully modeling the molecule environments and bypassing the invariant subgraphs. Specifically, we first incorporate chemistry theories into our graph growth generator to imitate expaned environments, and then devise an GIB-based objective to disentangle environment from whole graphs and finally introduce a cross-attention based soft causal interaction, which allows dynamic interactions between environments and invariances. We perform experiments on seven datasets by imitating different kinds of OOD generalization scenarios. Extensive comparison, ablation experiments as well as visualized case studies demonstrate well generalization ability of our proposal.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined