WeChat Mini Program
Old Version Features

Structural Fingerprinting of Crystalline Materials from XRD Patterns Using Atomic Cluster Expansion Neural Network and Atomic Cluster Expansion

Xiao Zhang,Xitao Wang, Shunbo Hu

mdpi(2025)

Cited 0|Views0
Abstract
This study introduces a novel contrastive learning-based X-ray diffraction (XRD) analysis framework, an SE(3)-equivariant graph neural network (E3NN) based Atomic Cluster Expansion Neural Network (EACNN), which reduces the strong dependency on databases and initial models in traditional methods. By integrating E3NN with atomic cluster expansion (ACE) techniques, a dual-tower contrastive learning model has been developed, mapping crystal structures and XRD patterns to a continuous embedding space. The EACNN model retains hierarchical features of crystal systems through symmetry-sensitive encoding mechanisms and utilizes relationship mining via contrastive learning to replace rigid classification boundaries. This approach reveals gradual symmetry-breaking patterns between monoclinic and orthorhombic crystal systems in the latent space, effectively addressing the recognition challenges associated with low-symmetry systems and small sample space groups. Our investigation further explores the potential for model transfer to experimental data and multimodal extensions, laying the theoretical foundation for establishing a universal structure–property mapping relationship.
More
Translated text
Key words
contrastive learning,SE(3)-equivariant graph neural networks,low-symmetry crystal systems
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined