Chrome Extension
WeChat Mini Program
Use on ChatGLM

Enhanced Visibility Graph for EEG Classification

Frontiers in neuroscience(2025)

Department Computer Science | Department of Microsystems

Cited 0|Views0
Abstract
Electroencephalography (EEG) holds immense potential for decoding complex brain patterns associated with cognitive states and neurological conditions. In this paper, we propose an end-to-end framework for EEG classification that integrates power spectral density (PSD) and visibility graph (VG) features together with deep learning (DL) techniques. Our framework offers a holistic approach for capturing both frequency-domain characteristics and temporal dynamics of EEG signals. We evaluate four DL architectures, namely multilayer perceptron (MLP), long short-term memory (LSTM) networks, InceptionTime and ChronoNet, applied to several datasets and in different experimental conditions. Results demonstrate the efficacy of our framework in accurately classifying EEG data, in particular when using VG features. We also shed new light on the relative strengths and limitations of different feature extraction methods and DL architectures in the context of EEG classification. Our work contributes to advancing EEG analysis and facilitating the development of more accurate and reliable EEG-based systems for neuroscience and beyond. The full code of this research work is available on https://github.com/asmab89/VisibilityGraphs.git.
More
Translated text
Key words
EEG classification,visibility graph,feature learning,deep learning,disease detection
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest