Monocular Unmanned Boat Ranging System Based on YOLOv11-Pose Critical Point Detection and Camera Geometry
Journal of Marine Science and Engineering(2025)
Institute of Logistics Science and Engineering
Abstract
Abstract: Unmanned boat distance detection is an important foundation for autonomous navigation tasks of unmanned boats. Monocular vision ranging has the advantages of low hardware equipment requirements, simple deployment, and high efficiency of distance detection. Unmanned boats can sense the real-time navigational situation of waters through monocular vision ranging, providing data support for their autonomous navigation. This paper establishes a framework for unmanned boat distance detection. The framework extracts and recognizes the features of an unmanned boat through Yolov11m-pose and selects the key points of the ship for physical distance mapping. Using the camera calibration to obtain the pixel focal length, the main point coordinates and other parameters are obtained. The number of pixel points in the image key point to the image center pixel and the actual distance of the camera from the horizontal plane are combined with the focal length of the camera for triangular similarity conversion. These data are fused with the camera pitch angle and other parameters to obtain the final distance. At the same time, experimental verification of the key point detection model demonstrates that it fully meets the requirements for unmanned boat ranging tasks, as assessed by Precision, Recall, mAP50, mAP50-95 and other indicators. These indicators show that Yolov11m-pose has a better accuracy in the key point detection task with an unmanned boat. The verification experiments also illustrate the accuracy of the key point-based physical distance mapping compared with the traditional detection frame-based physical distance mapping, which was assessed by the mean squared error (MSE), the root mean square error (RMSE), and the mean absolute error (MAE). The metrics show that key point-based unmanned boat distance mapping has greater accuracy in a variety of environmental situations, which verifies the effectiveness of this approach.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined