基本信息
浏览量:20

个人简介
Deep neural networks (DNNs) are commonly used as universal function approximators where individual neurons learn to induce changes/non-liniearities in the function being learned. My research involves studying how the local geometry of non-linearities in the learned functions relate to memorization, generalization, biases, and robustness in DNNs. Our work has broad implications across domains, e.g., in interpreting/explaining DNN phenomenon, model auditing, providing provable robustness/safety guarantees and even prediciting downstream behavior of generative models for a given prompt/latent. Apart from this I like thinking about synthetic data training and how it can be used to obtain desired properties in DNN functions.
研究兴趣
论文共 36 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Ibtihel Amara,Ahmed Imtiaz Humayun,Ivana Kajic,Zarana Parekh, Natalie Harris, Sarah Young,Chirag Nagpal,Najoung Kim,Junfeng He,Cristina Nader Vasconcelos,Deepak Ramachandran, Goolnoosh Farnadi,Katherine Heller,Mohammad Havaei,Negar Rostamzadeh
CoRR (2025)
引用0浏览0EI引用
0
0
CoRR (2024)
引用0浏览0EI引用
0
0
Nazmuddoha Ansary,Quazi Adibur Rahman Adib,Tahsin Reasat,Asif Shahriyar Sushmit,Ahmed Imtiaz Humayun,Sazia Mehnaz, Kanij Fatema, Mohammad Mamun Or Rashid,Farig Sadeque
International Conference on Language Resources and Evaluationpp.17019-17030, (2024)
引用0浏览0EI引用
0
0
ICLR 2024 (2024)
引用0浏览0引用
0
0
CoRR (2024)
引用0浏览0EI引用
0
0
加载更多
作者统计
#Papers: 36
#Citation: 343
H-Index: 11
G-Index: 18
Sociability: 5
Diversity: 1
Activity: 45
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn