基本信息
views: 110

Bio
Research focus
Presynaptic mechanisms
Information processing in the brain depends on release of neurotransmitters from synaptic vesicles at nerve terminals. A complex protein machinery controls the trafficking of synaptic vesicles throughout the synaptic vesicle cycle. This cycle involves SNARE protein-dependent membrane fusion in the active zone, and clathrin- and dynamin-mediated endocytosis in the periactive zone. The vesicle then sheds its coat and returns to the release site or passes via an endosomal sorting step.
We study the molecular mechanisms that control synaptic vesicle cycling and the relationship between these mechanisms and neurodegenerative disease mechanisms.
A current interest concerns the role of Eps15 homology domain proteins (EHDs), previously linked with endosomes in non-neuronal cells. We have found that a conserved EHD 1/3 orthologue (l-EHD) is associated with synaptic endocytic intermediates, and that acute perturbation of l-EHD impairs synaptic vesicle budding in the periactive zone. Accumulation of dynamin-containing helices at trapped endocytic intermediates indicates that l-EHD takes part in regulating dynamin function, which is supported by in vitro experiments (see Figure).
Another current interest concerns how amyloid precursor protein (APP) is processed in nerve terminals. Formation of Abeta peptides at synapses has been linked with the level of synaptic vesicle cycling in nerve terminals, and it has been proposed to contribute to the synaptic pathology in Alzheimer’s disease.
Presynaptic mechanisms
Information processing in the brain depends on release of neurotransmitters from synaptic vesicles at nerve terminals. A complex protein machinery controls the trafficking of synaptic vesicles throughout the synaptic vesicle cycle. This cycle involves SNARE protein-dependent membrane fusion in the active zone, and clathrin- and dynamin-mediated endocytosis in the periactive zone. The vesicle then sheds its coat and returns to the release site or passes via an endosomal sorting step.
We study the molecular mechanisms that control synaptic vesicle cycling and the relationship between these mechanisms and neurodegenerative disease mechanisms.
A current interest concerns the role of Eps15 homology domain proteins (EHDs), previously linked with endosomes in non-neuronal cells. We have found that a conserved EHD 1/3 orthologue (l-EHD) is associated with synaptic endocytic intermediates, and that acute perturbation of l-EHD impairs synaptic vesicle budding in the periactive zone. Accumulation of dynamin-containing helices at trapped endocytic intermediates indicates that l-EHD takes part in regulating dynamin function, which is supported by in vitro experiments (see Figure).
Another current interest concerns how amyloid precursor protein (APP) is processed in nerve terminals. Formation of Abeta peptides at synapses has been linked with the level of synaptic vesicle cycling in nerve terminals, and it has been proposed to contribute to the synaptic pathology in Alzheimer’s disease.
Research Interests
Papers共 220 篇Author StatisticsCo-AuthorSimilar Experts
By YearBy Citation主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Biochemistry (Moscow), Supplement Series A Membrane and Cell Biologyno. 1 (2024): 51-54
Neuroscience Applied (2023): 103803
Biochemistry (Moscow) Supplement Series A Membrane and Cell Biologyno. 2 (2023): 69-82
Neuroscience Applied (2023): 103866
openalex(2023)
openalex(2021)
Cited0Views0Bibtex
0
0
European Neuropsychopharmacology (2021): S205-S205
Load More
Author Statistics
#Papers: 220
#Citation: 7896
H-Index: 49
G-Index: 88
Sociability: 6
Diversity: 2
Activity: 5
Co-Author
Co-Institution
D-Core
- 合作者
- 学生
- 导师
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn