基本信息
views: 80

Bio
The research in my lab has focused on biological knowledge discovery, genomic data integration and mining, and computational systems biology. We previously developed machine learning models and web-based tools for biomedical research, including BindN and BindN+ for predicting DNA/RNA-binding residues in protein sequence, MuStab for protein stability prediction, and seeSUMO for protein sumoylation site prediction. We also integrated and mined the vast amount of publicly available gene expression data for understanding the molecular pathways involved in human diseases, including intellectual disability, autism, and cancer.
Recently, we have been developing machine learning and data mining approaches for the functional annotation of human long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) by leveraging the vast amount of genetic and genomic data ("biological big data"). We have constructed machine learning models and gene co-expression networks to predict and prioritize candidate lncRNAs associated with intellectual disability and autism spectrum disorders. We have also applied deep learning techniques to the prediction and pattern analysis of lncRNA subcellular localization, circRNA back-splicing code, and RNA-protein interactions. Our studies demonstrate that genomic data mining can not only give insights into RNA functions in gene regulation and 3D genome organization, but also provide valuable information for experimental studies of candidate genes associated with human diseases.
Recently, we have been developing machine learning and data mining approaches for the functional annotation of human long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) by leveraging the vast amount of genetic and genomic data ("biological big data"). We have constructed machine learning models and gene co-expression networks to predict and prioritize candidate lncRNAs associated with intellectual disability and autism spectrum disorders. We have also applied deep learning techniques to the prediction and pattern analysis of lncRNA subcellular localization, circRNA back-splicing code, and RNA-protein interactions. Our studies demonstrate that genomic data mining can not only give insights into RNA functions in gene regulation and 3D genome organization, but also provide valuable information for experimental studies of candidate genes associated with human diseases.
Research Interests
Papers共 78 篇Author StatisticsCo-AuthorSimilar Experts
By YearBy Citation主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Genesno. 11 (2023): 1998-1998
Load More
Author Statistics
#Papers: 78
#Citation: 5948
H-Index: 31
G-Index: 71
Sociability: 5
Diversity: 3
Activity: 2
Co-Author
Co-Institution
D-Core
- 合作者
- 学生
- 导师
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn