Mri-based Radiomics Signatures for Preoperative Prediction of Ki-67 Index in Primary Central Nervous System Lymphoma
European Journal of Radiology(2024)
Fudan Univ | Department of Nuclear Medicine | Shandong Univ
Abstract
Purpose: The aim of this study was to develop and validate radiomics signatures based on MRI for preoperative prediction of Ki-67 proliferative index (PI) expression in primary central nervous system lymphoma (PCNSL). Methods: A total of 341 patients with PCNSL were retrospectively analyzed, including 286 patients in one center as the training set and 55 patients in another two centers as the external validation set. Radiomics features were extracted and selected from preoperative contrast-enhanced T1-weighted images, fluid attenuation inversion recovery to build radiomics signatures according to the Ki-67 PI. The predictive performances of the radiomics model were evaluated using four classifiers including random forest, K-Nearest Neighbors, Neural Network and Decision Tree. A combined model was built by incorporating radiomics signature, clinical variables and MRI radiological characteristics using multivariate logistic regression analysis, and a nomogram was established to predict the expression of Ki-67 individually. The predictive performances of the models were evaluated using area under receiver operating characteristic curve (AUC) and decision curve analysis (DCA). Results: Radiomics signatures were independent predictors of the expression level of Ki-67 (OR: 2.523, P < 0.001). RF radiomics models had the highest accuracy (0.934 in the training set and 0.811 in the external validation set) and F1 Score (0.920 in the training set and 0.836 in the external validation set). The clinicradiologic-radiomics nomogram showed better predictive performance with AUCs of 0.877(95 % CI: 0.837-0.918) in the training set and 0.866(95 % CI: 0.774-0.957) in the external validation set. The calibration curve and DCA demonstrated goodness-of-fit and improved benefits in clinical practice of the nomogram. Conclusions: Nomograms integrating MRI-based radiomics and clinical-radiological characteristics could effectively predict Ki-67 PI in primary PCNSL.
MoreTranslated text
Key words
Ki-67,Radiomics,Magnetic resonance imaging,Primary central nervous system lymphoma
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2017
被引用181 | 浏览
2017
被引用44 | 浏览
2016
被引用13 | 浏览
2018
被引用93 | 浏览
2019
被引用22 | 浏览
2021
被引用12 | 浏览
2021
被引用9 | 浏览
2023
被引用4 | 浏览
2022
被引用21 | 浏览
2023
被引用12 | 浏览
2023
被引用5 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined