WeChat Mini Program
Old Version Features

High-Precision Peach Fruit Segmentation under Adverse Conditions Using Swin Transformer

Agriculture-Basel(2024)SCI 3区

Jeonbuk Natl Univ

Cited 3|Views1
Abstract
In the realm of agricultural automation, the efficient management of tasks like yield estimation, harvesting, and monitoring is crucial. While fruits are typically detected using bounding boxes, pixel-level segmentation is essential for extracting detailed information such as color, maturity, and shape. Furthermore, while previous studies have typically focused on controlled environments and scenes, achieving robust performance in real orchard conditions is also imperative. To prioritize these aspects, we propose the following two considerations: first, a novel peach image dataset designed for rough orchard environments, focusing on pixel-level segmentation for detailed insights; and second, utilizing a transformer-based instance segmentation model, specifically the Swin Transformer as a backbone of Mask R-CNN. We achieve superior results compared to CNN-based models, reaching 60.2 AP on the proposed peach image dataset. The proposed transformer-based approach specially excels in detecting small or obscured peaches, making it highly suitable for practical field applications. The proposed model achieved 40.4 AP for small objects, nearly doubling that of CNN-based models. This advancement significantly enhances automated agricultural systems, especially in yield estimation, harvesting, and crop monitoring.
More
Translated text
Key words
agricultural automation,computer vision,fruit segmentation,transformer
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本文提出了一种在恶劣条件下对桃子果实进行高精度像素级分割的方法,使用基于Transformer的Mask R-CNN模型,并在自定义的桃子图像数据集上取得了显著效果。

方法】:研究采用Swin Transformer作为Mask R-CNN的主干网络,进行桃子果实的实例分割。

实验】:在自定义的桃子图像数据集上进行测试,模型达到了60.2的平均精度(AP),对于小目标物体的检测平均精度达到了40.4,相比基于CNN的模型有显著提升。