Raman Microscopy Allows to Follow Internalization, Subcellular Accumulation and Fate of Iron Oxide Nanoparticles in Cells
Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy(2024)
AGH Univ Krakow | Jagiellonian Univ | Czech Acad Sci
Abstract
An important issue in the context of both potenial toxicity of iron oxide nanoparticles (IONP) and their medical applications is tracking of the internalization process of these nanomaterials into living cells, as well as their localization and fate within them. The typical methods used for this purpose are transmission electron microscopy, confocal fluorescence microscopy as well as light-scattering techniques including dark-field microscopy and flow cytometry. All the techniques mentioned have their advantages and disadvantages. Among the problems it is necessary to mention complicated sample preparation, difficult interpretation of experimental data requiring qualified and experienced personnel, different behavior of fluorescently labeled IONP comparing to those label-free or finally the lack of possibility of chemical composition characteristics of nanomaterials. The purpose of the present investigation was the assessment of the usefulness of Raman microscopy for the tracking of the internalization of IONP into cells, as well as the optimization of this process. Moreover, the study focused on identification of the potential differences in the cellular fate of superparamagnetic nanoparticles having magnetite and maghemite core. The Raman spectra of U87MG cells which internalized IONP presented additional bands which position depended on the used laser wavelength. They occurred at the wavenumber range 1700-2400 cm-1 for laser 488 nm and below the wavenumber of 800 cm-- 1 in case of laser 532 nm. The intensity of the mentioned Raman bands was higher for the green laser (532 nm) and their position, was independent and not characteristic on the primary core material of IONP (magnetite, maghemite). The obtained results showed that Raman microscopy is an excellent, non-destructive and objective technique that allows monitoring the process of internalization of IONP into cells and visualizing such nanoparticles and/or their metabolism products within them at low exposure levels. What is more, the process of tracking IONP using the technique may be further improved by using appropriate wavelength and power of the laser source.
MoreTranslated text
Key words
Iron oxide nanoparticles,Magnetite and maghemite core,Internalization into cells,Raman spectroscopy and imaging,Multivariate methods
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
1989
被引用228 | 浏览
2009
被引用786 | 浏览
2002
被引用1399 | 浏览
2011
被引用2368 | 浏览
2014
被引用259 | 浏览
2015
被引用52 | 浏览
2015
被引用77 | 浏览
2017
被引用23 | 浏览
2018
被引用65 | 浏览
2021
被引用30 | 浏览
2020
被引用35 | 浏览
2021
被引用9 | 浏览
2021
被引用64 | 浏览
2021
被引用13 | 浏览
2022
被引用63 | 浏览
2021
被引用684 | 浏览
2023
被引用17 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest