基本信息
views: 176

Bio
Research
High-power semiconductor lasers are the most efficient man-made light sources, and can convert more than 80% electric energy into light. Currently emission powers of one kW continuous-wave powers are extracted from a single monolithic semiconductor chip. We are interested in the intrinsic limitations of such optoelectronic devices in terms of output power, beam quality (brightness) and lifetime (reliability). For this purpose, we analyze devices, but also their components such as surfaces and interfaces or gain materials such as quantum wells, superlattices and quantum dots.
For our experiments, we use optical tools, in particular transient spectroscopy that represents a generic competence of MBI. Such work is naturally carried out as collaborative work with device vendors, who provide us with high-quality industry-grade devices and structures. The use of such devices ensures high reproducibility and the chance to get general results, which not depend on the particular device structure that was studied. In BMBF-projects such as BlauLas, we work together with Osram OS (Regensburg), Dilas GmbH (Maiz) and Laserline GmbH (Mülheim) or in the frame of bilateral research contracts with Lumentum (Santa Clara) and 3S-Photonics (Nozay).
The material basis of the investigated devices is now focused to GaN-based wide-bandgap devices emitting in the ultraviolet to blue spectral regions. The figure shows damage patterns as observed in 450-nm emitting high power diode lasers after it experienced the so-called catastrophic optical damage in short-pulse operation.
High-power semiconductor lasers are the most efficient man-made light sources, and can convert more than 80% electric energy into light. Currently emission powers of one kW continuous-wave powers are extracted from a single monolithic semiconductor chip. We are interested in the intrinsic limitations of such optoelectronic devices in terms of output power, beam quality (brightness) and lifetime (reliability). For this purpose, we analyze devices, but also their components such as surfaces and interfaces or gain materials such as quantum wells, superlattices and quantum dots.
For our experiments, we use optical tools, in particular transient spectroscopy that represents a generic competence of MBI. Such work is naturally carried out as collaborative work with device vendors, who provide us with high-quality industry-grade devices and structures. The use of such devices ensures high reproducibility and the chance to get general results, which not depend on the particular device structure that was studied. In BMBF-projects such as BlauLas, we work together with Osram OS (Regensburg), Dilas GmbH (Maiz) and Laserline GmbH (Mülheim) or in the frame of bilateral research contracts with Lumentum (Santa Clara) and 3S-Photonics (Nozay).
The material basis of the investigated devices is now focused to GaN-based wide-bandgap devices emitting in the ultraviolet to blue spectral regions. The figure shows damage patterns as observed in 450-nm emitting high power diode lasers after it experienced the so-called catastrophic optical damage in short-pulse operation.
Research Interests
Papers共 375 篇Author StatisticsCo-AuthorSimilar Experts
By YearBy Citation主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Gallium Nitride Materials and Devices XIX (2024)
openalex(2024)
Anagha Kamath,Oliver Skibitzki,Davide Spirito,Shabnam Dadgostar, Irene Mediavilla Martinez,Martin Schmidbauer,Carsten Richter,Albert Kwasniewski,Jorge Serrano,Juan Jimenez,Christian Golz,Markus Andreas Schubert,Jens W. Tomm,Gang Niu,Fariba Hatami
PHYSICAL REVIEW MATERIALSno. 10 (2023)
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERSno. 7 (2023)
JOURNAL OF ELECTRONIC MATERIALSno. 8 (2023): 5166-5171
Physical Review Appliedno. 5 (2023)
Physical Review Appliedno. 5 (2023)
Jan Ruschel,Jens W. Tomm,Johannes Glaab,Tim Kolbe,Arne Knauer,Jens Rass,Neysha Lobo-Ploch, Tamukanashe A. Musengezi,Sven Einfeldt
Applied Physics Lettersno. 13 (2023)
Load More
Author Statistics
#Papers: 375
#Citation: 4543
H-Index: 33
G-Index: 46
Sociability: 7
Diversity: 3
Activity: 6
Co-Author
Co-Institution
D-Core
- 合作者
- 学生
- 导师
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn